
IMPROVEMENT IN HURRICANE
INTENSITY FORECAST USING
NEURAL NETWORKS
Tirthankar Ghosh and TN Krishnamurti
Florida State University
Tallahassee, FL-32306, USA

HFIP Annual Review Meeting, Jan 11-12, 2017
National Hurricane Center, Miami

Acknowledgement: HFIP, NOAA Award No. NA15OAR4320064



 Human brain takes best possible decision from 
past experience

 Information from the environment is taken by 
the sensory organs & passed to the brain through 
neurons (nerve cells)

 10 billion nerves with 10000 synapses (meeting 
point of two nerves) 
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 Input branch (Dendrites)
 Output branch (Axon)
 Dendrites sends the 

received information 
through the cell body to
the action

* Axon passes it to dendrite 
of the next neuron via 
synapse
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IDEA IS FOLLOWED TO APPROXIMATE
OUTPUT FOR A GIVEN SET OF INPUTS
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ACTIVATION FUNCTION

 Linear

 Logistic

 Hyper tangent

5



APPLICATIONS

 Classification
 Discrimination
 Estimation (time series prediction)
 Process identification
 Process control
 Etc …
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TYPES WE CONSIDER

 Multilayer Perceptron (MLP)

 Generalized Regression Neural Network

Information flows from input to output
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LEARNING

 Previous observations on input (s) as well as 
output are provided repeatedly to estimate the 
neuron parameters (supervised learning)

 Modification of parameters for better 
performance (desired output)

8



CHOICE OF WEIGHTS

 Let                                                           be a set of 
given observations

 Estimate y which minimizes the square error loss

 The weights (here model weights) are so chosen 
that ESS would be minimum
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CHOICE OF WEIGHTS CONTD…
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MLP
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TASKS

 Numbers of hidden layers (developer provided)

 Determining the learning rate (developer 
provided)

 Train the network

 Evaluate the performance

 Repeat the above process if not satisfied 
(iterative) 12



GRNN: BASED ON STANDARD STATISTICAL
THEORY
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GRNN: SCHEMATIC PRESENTATION

Input layer Pattern layer
Summation 
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ADVANTAGES

 No user choice for the network architecture

 Only one parameter to be estimated

 Does not get trapped into the local optima

 Requires less number of data for training

 Useful for continuous data
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RESULTS: SEASON 2012 INTENSITY ERRORS
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INTENSITY ERRORS: SEASON 2014
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SEASON 2015
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SEASON 2016: INTENSITY ERRORS
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SKILLS: 2016 SEASON
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CONCLUDING REMARKS

 Seasonal summaries indicate that the 
improved MMSE carries, consistently, least 
intensity forecast errors

 For longer forecast leads, beyond 60hrs, 
Neural Networked based MMSE performs 
better than the earlier forecast leads. It is 
very useful for government planning and 
evacuation, if needed

 Individual storm forecast errors show that 
none of the models is consistently best 27



CONCLUDING REMARKS CONTD …
 Improved MMSE is the best or the second 

best performer for individual storms as well

 Proposed method is providing consistent 
consensus forecasts having least forecast 
errors which be depended upon

Ensemble forecasts based on neural networks 
may be considered for real-time forecast 
guidance in case of hurricane and tropical 
storms 

 Forecasting of tracks may also be examined 28



Thank you
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