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Human brain takes best possible decision from
past experience

Information from the environment is taken by
the sensory organs & passed to the brain through
neurons (nerve cells)

10 billion nerves with 10000 synapses (meeting
point of two nerves)
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IDEA IS FOLLOWED TO APPROXIMATE
OUTPUT FOR A GIVEN SET OF INPUTS




ACTIVATION FUNCTION

o Linear

o Logistic

o Hyper tangent




APPLICATIONS

Classification

Discrimination

Estimation (time series prediction)
Process 1dentification

Process control

Ete ...



TYPES WE CONSIDER

Multilayer Perceptron (MLP)

Generalized Regression Neural Network

Information flows from input to output



LEARNING

Previous observations on input (s) as well as
output are provided repeatedly to estimate the
neuron parameters (supervised learning)

Modification of parameters for better
performance (desired output)



CHOICE OF WEIGHTS

Let {XlJ( J yk }1 k=12,...,N; J =12,..., P be a set of
glven observations

Estimate y which minimizes the square error loss
N

ESS :%Z[yk — f(x*, w)f

k=1

The weights (here model weights) are so chosen
that ESS would be minimum
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where n = no. of input neurons, w; = synaptic weight for the i~ neuron, m; = input to the 1
neuron. It fits to our problem of combining some model forecasts through a linear combination.
Let (05, M) .1 = 1, 2, ..., K; j=1.2, ..., N are, respectively, given observed and corresponding

input values where K i1s number of models and N is the number of available cases.

Hence, for a single observation the weights are adjusted for error minimization as follows.
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For updating the movement, it should be in the opposite direction to the gradient.

JESS
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At each stage the error
£, <o, —I‘TCM}

is to be computed and the updated NN weights are given by
W, <—Ww, +as,m,

where a i1s known as the learning rate.



MLP

Input Hidden layers Output
layer layer




TASKS

o Numbers of hidden layers (developer provided)

o Determining the learning rate (developer
provided)

o Train the network
o Evaluate the performance

o Repeat the above process if not satisfied
(iterative) @




GRNN: BASED ON STANDARD STATISTICAL
THEORY

The conditional mean E(Y/x) or the regression equation, Y (x), of Y for a given value of X, x,

1s given by

o0

A fyf (x. y)dy
Y(x)=E(y/x)=-—= (D

[/ Ge 3y

where f'(x,)) 1s the joint continuous probability density function of X (vector valued) and Y. Y
may also be vector valued and the corresponding estimate can be derived accordingly.
The pdf has to be estimated from sample observations (x, y) when 1t 1s unknown. If (x;.v) .,

1=1.,2, ....n are the sample values of size n of the random variables (X.Y) then the estimated pdf

Jf(x,y)1s given by

f(;’y) = ! — -liexp{— (x—x,) (Zx_x")}exp|:— W =y) (23’_37;')} (2)

Q2r)» st n < 20 20

where p 1s the dimension of the vector variable X.



That 15 the estimate of the pdf 15 sum of the sample probabilities of width ¢ for each sample (x;,

yi). Substitution of estimated pdf obtamed 1n (2) to (1) provides the desired conditional mean
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Taking D] =(x—x,)" (x—x,) and after the integration the expression for the conditional mean

obtained, by Specht(1991), 1s

g

iy;- eXp(— D’_,,J
il 20°

3)

Parzen (1962) and Cacoullos (1966) have shown the consistency and asymptotic convergence of
the estimate to the true value at all sample points where the density is continuous provided

o(n) —0as n >0 andno’ (n) — w0 as n — . Specht (1991) had based it on the Gaussian
kernel function.

Therefore, the estimated conditional mean 1s a weighted average of observed y;’s where each

observation 1s weighted exponentially according to its Euclidean distance from x.



GRNN: SCHEMATIC PRESENTATION
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Input layer Pattern layer laver laver




ADVANTAGES

o No user choice for the network architecture
o Only one parameter to be estimated

o Does not get trapped into the local optima
o Requires less number of data for training

o Useful for continuous data




RESULTS: SEASON 2012 INTENSITY ERRORS
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INTENSITY ERRORS: SEASON 2014
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SEASON 2015
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Skill relative to Decay-SHIFOR5 %)
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SEASON 2016: INTENSITY ERRORS
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SKILLS: 2016 SEASON
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Matthew 2016
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CONCLUDING REMARKS

Seasonal summaries indicate that the
1mproved MMSE carries, consistently, least
intensity forecast errors

For longer forecast leads, beyond 60hrs,
Neural Networked based MMSE performs
better than the earlier forecast leads. It 1s
very useful for government planning and
evacuation, if needed

Individual storm forecast errors show that
none of the models 1s consistently best



CONCLUDING REMARKS CONTD ...

Improved MMSE is the best or the second
best performer for individual storms as well

Proposed method 1s providing consistent
consensus forecasts having least forecast
errors which be depended upon

Ensemble forecasts based on neural networks
may be considered for real-time forecast
guldance 1n case of hurricane and tropical
storms

Forecasting of tracks may also be examined



Thank you
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